Relation between N numbers and their LCMs and GCDs

C.S.Abhishek

Abstract- This paper explains the relation among product of ' n ' natural numbers and the LCMs and GCDs of all combinations of these numbers. It is known that the product of two numbers is equal to the product of their LCM and GCD. There is also a relation for three numbers. In this paper I am going to introduce two generalized relations for ' n ' natural numbers.
Index Terms - N numbers, Product , LCM (Least Common Multiple), GCD (Greatest Common Multiple), Relation-1, Relation-2, Odd, Even

1 Introduction

We know that if a, b are two numbers then their product is equal to product of their LCM and GCD

$$
\text { i.e. } a x b=\operatorname{LCM}(a, b) \times \operatorname{GCD}(a, b)
$$

and also we know that if a, b, c are 3 numbers then
$\operatorname{LCM}(\mathrm{a}, \mathrm{b}, \mathrm{c})=[\mathrm{a} \times \mathrm{b} \times \mathrm{c} \times \mathrm{GCD}(\mathrm{a}, \mathrm{b}, \mathrm{c})] /[\mathrm{GCD}(\mathrm{a}, \mathrm{b}) \times \mathrm{GCD}$ $(b, c) \times G C D(c, a)]$
$\operatorname{GCD}(\mathrm{a}, \mathrm{b}, \mathrm{c})=[\mathrm{a} \times \mathrm{b} \times \mathrm{c} \times \mathrm{LCM}(\mathrm{a}, \mathrm{b}, \mathrm{c})] /[\operatorname{LCM}(\mathrm{a}, \mathrm{b}) \times \mathrm{LCM}$ $(b, c) \times \operatorname{LCM}(c, a)]$

In this paper I am going to introduce two generalized formulae and their proof for ' n ' natural numbers. The product of ' n ' numbers can be expressed in terms of LCMs and GCDs of different combinations in two different ways as Relation 1 and Relation 2.

- C.S.Abhishek is studying 9th Class (during 2011-12) in St.Claire High School,Ramagundam, Dist:Karimnagar,A.P.,India. E-mail: nathcvr@yahoo.co.in

2 Relations

The Product of ' n ' numbers can be expressed in two forms i.e, Relation 1 and Relation 2 as below:

Let a_{1}, a_{2}, a_{3}. \qquad $. a_{n-1}, a_{n}$ be ' n ' natural numbers

Relation - 1

$a_{1} \times a_{2} \times a_{3} \ldots \ldots \ldots . a_{n-1} \times a_{n}=$
The product of GCDs of all sets containing even no. of Elements \times LCM (of all numbers.)

The product of GCDs of all sets containing odd no. of elements (except 1)

Relation - 2
$a_{1} \times a_{2} \times a_{3} \ldots \ldots \ldots . a_{n-1} \times a_{n}=$
The product of LCMs of all sets containing even no. of Elements \times GCD(of all numbers.)

The product of LCMs of all sets containing odd no. of elements (except 1)

Now let us prove the 1st Relation i.e.
$a_{1} \times a_{2} \times a_{3} \ldots \ldots . . a_{n-1} \times a_{n}=$
The product of GCDs of all sets containing even no. of Elements $\times \mathrm{LCM}$ (of all numbers.)

The product of GCDs of all sets containing odd no. of elements (except 1)

Let a_{1}, a_{2}, a_{3}. \qquad $. . a_{n-1}, a_{n}$ be ' n ' natural numbers

The above equation can be rearranged as
\qquad
$1=$
The product of GCDs of all sets containing even no. of Elements $\times \mathrm{LCM}$ (of all numbers)
Let
$\mathrm{a}_{1}=2^{\wedge}\left(\mathrm{x}_{1}\right) \times 3^{\wedge}\left(\mathrm{y}_{2}\right) \times 5^{\wedge}\left(\mathrm{z}_{3}\right)$. \qquad
$\mathrm{a}_{2}=2^{\wedge}\left(\mathrm{x}_{3}\right) \times 3^{\wedge}\left(\mathrm{y}_{4}\right) \times 5^{\wedge}\left(\mathrm{z}_{1}\right)$.
:
:
:
$a_{n}=2^{\wedge}\left(x_{n}\right) \times 3\left(y_{1}\right) \times 5^{\wedge}\left(z_{n-1}\right) \times$. \qquad
(all numbers are taken in random)
(all exponents are whole numbers only)
Let us assume
$\mathrm{x}_{1} \leq \mathrm{x}_{2} \leq \mathrm{x}_{3}$. \qquad
$y_{1} \leq y_{2} \leq y_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . y_{n-1} \leq y_{n}$
and so on.
Similarly with all other exponents of prime factors.

Let us take Numerator

$a_{1} \times a_{2} \times a_{3} \ldots \ldots \ldots . a_{n-1} \times a_{n} \times$ The product of GCDs of all sets containing odd no. of elements(except 1$)=2 q \times 3^{r} \times 5^{s} \ldots . p^{t}$ For some $\{q, r, s$. \qquad $t\} \in N$
LCM (or GCD) of n numbers = Product of LCM (or GCD) of each of its prime factors with same base.

So for 2 powers we apply the above relation
We take elements as $\mathrm{A}=\left\{2^{\wedge}\left(\mathrm{x}_{1}\right), 2^{\wedge}\left(\mathrm{x}_{2}\right) \ldots \ldots .2^{\wedge}\left(\mathrm{x}_{\mathrm{n}-1}\right), 2^{\wedge}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$
$\left(x_{1} \leq x_{2} \leq x_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{x}_{\mathrm{n}-1} \leq \mathrm{x}_{\mathrm{n}}\right)$

Let solution is $=2 q$
To know the value of q it is necessary to find the number of sets

No. of sets containing odd no. of elements with $2^{\wedge}\left(x_{1}\right)$ as GCD are :

With 3no`s \(\left\{2^{\wedge}\left(x_{1}\right), a, b\right\} a\) and \(b\) are any two numbers of set \(A\). There can be \({ }^{\mathrm{n}-1} \mathrm{C}_{2}\) such sets possible. With 5no`s $\quad\left\{2^{\wedge}\left(x_{1}\right), a, b, c, d\right\} a, b, c$ and d are any 4 numbers of set A. There can be ${ }^{n-1} C_{4}$ such sets possible and so on.

No of sets containing odd no. of elements with $2^{\wedge}\left(x_{2}\right)$ as GCD are :
With 3no`s \(\left\{2^{\wedge}\left(x_{2}\right), a, b\right\} a\) and \(b\) are any two numbers of set \(A\). There can be \({ }^{n-2} C_{2}\) such sets possible With 5no`s $\quad\left\{2^{\wedge}\left(x_{2}\right), a, b, c, d\right\} a, b, c$ and d are any 4 numbers set A. There can be ${ }^{n-2} C_{4}$ such sets possible .and so on

Solution $=2 q$

If we multiply GCD s (odd) and product of the numbers, we get


```
xn-1}+\mp@subsup{x}{n}{
```

the above relation can be simplified as

$$
\begin{aligned}
& q=\mathrm{x}_{1}\left\{1+\mathrm{n-1} \mathrm{C}_{2}+{ }^{\mathrm{n}-1} \mathrm{C}_{4}+{ }^{\mathrm{n}-1} \mathrm{C}_{6} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\right\}+ \\
& \mathrm{x}_{2}\left\{1+\mathrm{n-2} \mathrm{C}_{2}+\mathrm{n-2} \mathrm{C}_{4}+\mathrm{n-2} \mathrm{C}_{6} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\right\}+\mathrm{x}_{3}\left\{1+{ }^{\mathrm{n}-3} \mathrm{C}_{2}+{ }^{\mathrm{n}-3} \mathrm{C}_{4}\right. \\
& \left.+{ }^{\mathrm{n}-3} \mathrm{C}_{6} \ldots \ldots \ldots \ldots .\right\} \ldots \ldots \ldots \ldots+\mathrm{x}_{\mathrm{n}-2}\left\{1+2 \mathrm{C}_{2}\right\}+\mathrm{x}_{\mathrm{n}-1}+\mathrm{x}_{\mathrm{n}}
\end{aligned}
$$

the above relation can be further rewritten as
$\mathrm{q}=\mathrm{x}_{1} \mathrm{n}^{\mathrm{n}-1} \mathrm{C}_{0}{ }^{+\mathrm{n}-1} \mathrm{C}_{2}{ }^{+\mathrm{n}-1} \mathrm{C}_{4}{ }^{+\mathrm{n}-1} \mathrm{C}_{6} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots+$ $\mathrm{x}_{2}\left\{{ }^{\mathrm{n}-2} \mathrm{C}_{0}+{ }^{\mathrm{n}-2} \mathrm{C}_{2}+{ }^{\mathrm{n}-2} \mathrm{C}_{4}+{ }^{\mathrm{n}-2} \mathrm{C}_{6} \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\right\}+\mathrm{x}_{3}\left\{{ }^{n-3} \mathrm{C}_{0}+{ }^{\mathrm{n}-3} \mathrm{C}_{2}+\right.$ $\left.{ }^{n-3} C_{4}+{ }^{n-3} C_{6} \ldots \ldots \ldots \ldots.\right\}+\ldots \ldots \ldots \ldots . . x_{n-2}\left\{{ }^{2} C_{0}+{ }^{2} C_{2}\right\}+x_{n-1}+x_{n}$

Now let us take Denominator
i .e
The product of GCDs of all sets containing even no. of Elements $\times \mathrm{LCM}$ (of all numbers)
Let

The product of GCDs of all sets containing even no. of Elements $\times \mathrm{LCM}$ (of all numbers) $=2^{u}$

So we take elements as $A=\left\{2^{\wedge}\left(x_{1}\right), 2^{\wedge}\left(x_{2}\right) \ldots 2^{\wedge}\left(x_{n-1}\right), 2^{\wedge}\left(x_{n}\right)\right\}$

$$
\left(x_{1} \leq x_{2} \leq x_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . x_{n-1} \leq x_{n}\right)
$$

Let solution is $=2^{u}$
So no. of sets containing even no. of elements with $2^{\wedge}\left(x_{1}\right)$ as GCD are :

With 2no`s \(\left\{2^{\wedge}\left(x_{1}\right), a\right\} a\) is any other number from set \(A\). There can be \({ }^{n-1} C_{1}\) such sets possible With 4no`s $\quad\left\{2^{\wedge}\left(x_{1}\right), a, b, c,\right\} a, b$ and c are any 3 numbers from set A. There can be ${ }^{n-1} C_{3}$ such sets
possible
.and so on.
So no of sets containing even no. of elements with $2^{\wedge}\left(\mathrm{x}_{2}\right)$ as GCD are:

With 2 no`s \(\quad\left\{2^{\wedge}\left(x_{2}\right), a,\right\}\) a is any number from set \(A\). There can be \({ }^{n-2} C_{1}\) such sets possible With 4no`s $\left\{2^{\wedge}\left(\mathrm{x}_{2}\right), \mathrm{a}, \mathrm{b}, \mathrm{c},\right\} \mathrm{a}, \mathrm{b}$ and c are any 3 numbers from seta. There can be ${ }^{n-2} C_{3}$ such sets
possible
$\ldots \ldots$. and so on
Solution $=2^{\wedge} u$
If we multiply GCD s(even) and LCM of the numbers, we get
$u=x_{1}\left\{{ }^{n-1} C_{1}+{ }^{n-1} C_{3}+{ }^{n-1} C_{5}+{ }^{n-1} C_{7} \ldots \ldots \ldots \ldots \ldots \ldots \ldots\right\}$

${ }^{n-3} C_{3}+{ }^{n-3} C_{5}+{ }^{n-3} C_{7}$
$\mathrm{x}_{\mathrm{n}-1}\left\{{ }^{1} \mathrm{C}_{1}\right\}+\mathrm{x}_{\mathrm{n}}$
(x_{n} is LCM of all numbers)
If this relation is correct,then

$$
\text { Numerator/Denominator }=1
$$

Substituting values, we get
$2^{\wedge} q / 2^{\wedge} u=1$
$2^{\wedge}(q-u)=1$
$\mathrm{q}-\mathrm{u}=0$
So if $\mathrm{q}-\mathrm{u}=0$ is proved, the above relation is true for n numbers
Let us check this
Substituting values of q and u
We get

$$
\begin{aligned}
& =\left[x_{1} \mathrm{n}^{n-1} C_{0}+{ }^{n-1} C_{2}+{ }^{n-1} C_{4}+{ }^{n-1} C_{6} \ldots \ldots \ldots \ldots \ldots .\right\}-\left\{{ }^{n-1} C_{1}+{ }^{n-1} C_{3}\right. \\
& \left.\left.+{ }^{n-1} C_{5}+{ }^{n-1} C_{7} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\right\}\right]+\left[x_{2}{ }^{n-2} C_{0}+{ }^{n-2} C_{2}+{ }^{n-2} C_{4}\right. \\
& \left.\left.+{ }^{n-2} C_{6} \ldots \ldots \ldots\right\}-\left\{{ }^{n-2} C_{1}+{ }^{n-2} C_{3}+n-2 C_{5}+n-2 C_{7} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .\right\}\right] \\
& \ldots \ldots+x_{n}-x_{n}+x_{n-1}-x_{n-1}
\end{aligned}
$$

since we know the relation

$\rightarrow\left({ }^{n} \mathrm{C}_{0}+{ }^{n} \mathrm{C}_{2}+{ }^{+\mathrm{n}} \mathrm{C}_{4}+{ }^{\mathrm{n}} \mathrm{C}_{6} \ldots \ldots ..\right)-\left({ }^{\mathrm{n}} \mathrm{C}_{1}+\mathrm{n} \mathrm{C}_{3}+{ }^{n} \mathrm{C}_{5}+{ }^{n} \mathrm{C}_{7} \ldots \ldots ..\right)=0$
using above relation

$$
\begin{aligned}
& {\left[x _ { 1 } \left\{{ }^{n-1} C_{0}+{ }^{n-1} C_{2}+{ }^{n-1} C_{4}+{ }^{n-1} C_{6} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots-\left\{{ }^{n-1} C_{3}+{ }^{n-1} C_{5}+{ }^{n-1} C_{7}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\right\}+\left[x _ { 2 } \left\{{ }^{n-2} C_{0}+{ }^{n-2} C_{2}+\right.\right.\right.\right.} \\
& \left.\left.{ }^{n-2} C_{4}+{ }^{n-2} C_{6} \ldots \ldots .\right\}-\left\{{ }^{n-2} C_{1}+{ }^{n-2} C_{3}+{ }^{n-2} C_{5}+{ }^{n-2} C_{7} \ldots \ldots \ldots \ldots .\right\}\right] \\
& \ldots \ldots \ldots \ldots \ldots+x_{n}-x_{n}+x_{n-1}-x_{n-1}
\end{aligned}
$$

i.e.,
$\left(\mathrm{x}_{1} \times 0\right)+\left(\mathrm{x}_{2} \times 0\right)$. $.+0=0$

So $q-u=0$,
Similarly for all other primes(3,5,7...etc) and their powers it holds true.

Similarly for all numbers because every number is product of primes and their powers.

$$
a_{1} \times a_{2} \times a_{3} \ldots \ldots \ldots . a_{n-1} \times a_{n} \times \text { The product of GCDs of all }
$$ sets containing odd no. of elements(except 1)

$1=$
The product of GCDs of all sets containing even no. of Elements $\times \mathrm{LCM}$ (all numbers)
i.e.,
$\mathrm{a}_{1} \times \mathrm{a}_{2} \times \mathrm{a}_{3} \ldots \ldots \ldots . . \mathrm{a}_{\mathrm{n}-1} \times \mathrm{a}_{\mathrm{n}}=$
The product of GCDs of all sets containing even no. of Elements $\times \mathrm{LCM}$ (all numbers.)

The product of GCDs of all sets containing odd no. of elements (except 1)

Hence Relation 1 is proved

4 Proof of Relation 2

$2^{\text {nd }}$ Relation

Now let us prove the $2^{\text {nd }}$ relation i.e.
$a_{1} \times a_{2} \times a_{3} \ldots \ldots \ldots . a_{n-1} \times a_{n}=$
The product of LCMs of all sets containing even no. of Elements $\times \mathrm{GCD}$ (all numbers.)

The product of LCMs of all sets containing odd no. of elements (except 1)

Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \ldots \ldots \ldots . \mathrm{a}_{\mathrm{n}-1}, \mathrm{a}_{\mathrm{n}}$ be ' n ' natural numbers
The above equation can be rearranged as
$a_{1} \times a_{2} \times a_{3}$ \qquad $. a_{n-1} \times a_{n} \times$ The product of LCMs of containing odd no. of elements(except 1)
$1=$
The product of LCMs of all sets containing even no. of Elements $\times \mathrm{GCD}$ (of all numbers)

Let
$\mathrm{a}_{1}=2^{\wedge}\left(\mathrm{x}_{1}\right) \times 3^{\wedge}\left(\mathrm{y}_{2}\right) \times 5^{\wedge}\left(\mathrm{z}_{3}\right)$.
$a_{2}=2^{\wedge}\left(x_{3}\right) \times 3^{\wedge}\left(y_{4}\right) \times 5^{\wedge}\left(z_{1}\right)$.

```
:
:
:
\(\mathrm{a}_{\mathrm{n}}=2^{\wedge}\left(\mathrm{x}_{\mathrm{n}}\right) \times 3\left(\mathrm{y}_{1}\right) \times 5^{\wedge}\left(\mathrm{z}_{\mathrm{n}-1}\right) \times\).
```

(all numbers are taken in random)
(all exponents are whole numbers only)
Let us assume
$x_{1} \geq x_{2} \geq x_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . x_{n-1} \geq x_{n}$
$y_{1} \geq y_{2} \geq y_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots y_{n-1} \geq y_{n}$
and so on.
Similarly with all other exponents of prime factors.
Let us take Numerator
$a_{1} \times a_{2} \times a_{3} \ldots \ldots \ldots . a_{n-1} \times a_{n} \times$ The product of GCDs of all sets containing odd no. of elements $($ except 1$)=2 q \times 3^{r} \times 5^{s} \ldots p^{t}$

For some $\{q, r, s$. $t\} \in N$

LCM (or GCD) of n numbers = Product of LCM (or GCD) of each of its prime factors with same base.

So for 2 powers we apply the above relation
We take elements as $A=\left\{2^{\wedge}\left(x_{1}\right), 2^{\wedge}\left(x_{2}\right) \ldots \ldots .2^{\wedge}\left(x_{n-1}\right), 2^{\wedge}\left(x_{n}\right)\right\}$
$\left(x_{1} \geq x_{2} \geq x_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . x_{n-1} \geq x_{n}\right)$
Let solution is $=2 q$
To know the value of q it is necessary to find the number of sets

No. of sets containing odd no. of elements with $2^{\wedge}\left(x_{1}\right)$ as LCM are :
all sets

With 3no`s $\quad\left\{2^{\wedge}\left(\mathrm{x}_{1}\right), \mathrm{a}, \mathrm{b}\right\}$ a and b are any two numbers of set A. There can be ${ }^{n-1} \mathrm{C}_{2}$ such sets possible

With 5no`s $\quad\left\{2^{\wedge}\left(\mathrm{x}_{1}\right), \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\right\} \mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are any 4 numbers of set A. There can be ${ }^{n-1} C_{4}$ such sets possible
and so on.

No of sets containing odd no. of elements with $2^{\wedge}\left(x_{2}\right)$ as LCM are:

With 3no`s $\left\{2^{\wedge}\left(\mathrm{x}_{2}\right), \mathrm{a}, \mathrm{b}\right\} \mathrm{a}$ and b are any two numbers of set A. There can be ${ }^{n-2} C_{2}$ such sets possible

With 5no`s $\left\{2^{\wedge}\left(\mathrm{x}_{2}\right), \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\right\} \mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are any 4 numbers set A. There can be ${ }^{n-2} C_{4}$ such sets possible .and so on

Solution $=2 q$

If we multiply LCMs (odd) and product of the numbers, we get
$q=x_{1}\left\{n-1 C_{2}+{ }^{n-1} C_{4}+{ }^{n-1} C_{6} \ldots \ldots \ldots \ldots \ldots.\right\}+x_{2}\left\{{ }^{n-2} C_{2}+{ }^{n-2} C_{4}+\right.$ $\left.{ }^{n-2} C_{6} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . ..\right\}+x_{3}\left\{{ }^{n-3} C_{2}+{ }^{n-3} C_{4}+{ }^{n-3} C_{6} \ldots \ldots \ldots \ldots\right\}$ $+\ldots \ldots \ldots \ldots . . x_{n-2}\left\{{ }^{2} \mathrm{C}_{2}\right\}+\mathrm{x}_{1}+\mathrm{x}_{2} \ldots \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}-1}+\mathrm{x}_{\mathrm{n}}$
the above relation can be simplified as
$q=x_{1}\left\{1+{ }^{n-1} C_{2}+{ }^{n-1} C_{4}+{ }^{n-1} C_{6} \ldots \ldots \ldots \ldots \ldots \ldots \ldots\right\}+x_{2}\left\{1+{ }^{n-2} C_{2}\right.$
$\left.+{ }^{n-2} C_{4}+{ }^{n-2} C_{6} \ldots \ldots \ldots \ldots \ldots \ldots.\right\}+x_{3}\left\{1+{ }^{n-3} C_{2}+{ }^{n-3} C_{4}+{ }^{n-3} C_{6}\right.$ $\ldots \ldots \ldots \ldots.\} \ldots \ldots \ldots \ldots+x_{n-2}\left\{1+{ }^{2} C_{2}\right\}+x_{n-1}+x_{n}$
the above relation can be further rewritten as

```
q = x x {n-1}\mp@subsup{C}{0}{}+\mp@subsup{}{}{n-1}\mp@subsup{C}{2}{}+\mp@subsup{}{}{n-1}\mp@subsup{C}{4}{}+\mp@subsup{}{}{n-1}\mp@subsup{C}{6}{}\ldots\ldots\ldots\ldots\ldots\ldots.........}
x}2{\mp@subsup{{}{n-2}{n-2}\mp@subsup{C}{0}{}+\mp@subsup{}{}{n-2}\mp@subsup{C}{2}{}+\mp@subsup{}{}{n-2}\mp@subsup{C}{4}{}+\mp@subsup{}{}{n-n-2}\mp@subsup{C}{6}{}\ldots\ldots\ldots\ldots\ldots\ldots.......} } + x x { {n-3 C C C +
```



```
+x
```

Now let us discuss about Denominator
i .e
The product of LCMs of all sets containing even no. of Elements \times GCD (of all numbers)
Let
The product of LCMs of all sets containing even no. of Elements $\times \mathrm{GCD}$ (of all numbers) $=2^{u}$

So we take elements as $A=\left\{2^{\wedge}\left(x_{1}\right), 2^{\wedge}\left(x_{2}\right) \ldots 2^{\wedge}\left(x_{n-1}\right), 2^{\wedge}\left(x_{n}\right)\right\}$

$$
\left(x_{1} \geq x_{2} \geq x_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . x_{n-1} \geq x_{n}\right)
$$

Let solution is $=2^{u}$

So no. of sets containing even no. of elements with $2^{\wedge}\left(x_{1}\right)$ as LCM are

With 2no`s \(\left\{2^{\wedge}\left(x_{1}\right), a\right\} a\) is any other number from set \(A\). There can be \({ }^{n-1} C_{1}\) such sets possible With 4no`s $\quad\left\{2^{\wedge}\left(x_{1}\right), a, b, c,\right\} a, b$ and c are any 3 numbers from set A. There can be ${ }^{n-1} C_{3}$ such sets
possible
.and so on.
So no of sets containing even no. of elements with $2^{\wedge}\left(\mathrm{x}_{2}\right)$ as LCM are

With 2no`s \(\left\{2^{\wedge}\left(x_{2}\right), a,\right\}\) a is any number from set \(A\). There can be \({ }^{n-2} C_{1}\) such sets possible With 4no`s $\quad\left\{2^{\wedge}\left(\mathrm{x}_{2}\right), \mathrm{a}, \mathrm{b}, \mathrm{c},\right\} \mathrm{a}, \mathrm{b}$ and c are any 3 numbers from set A. There can be ${ }^{n-2} C_{3}$ such sets possible .and so on

Solution $=2^{u}$

If we multiply LCM s(even) and GCD of the numbers, we get

```
u = x x {n-1}\mp@subsup{C}{1}{}+\mp@subsup{}{}{n-1}\mp@subsup{C}{3}{}+\mp@subsup{}{}{n-1}\mp@subsup{C}{5}{}+\mp@subsup{}{}{n}\mp@subsup{}{}{n-1}\mp@subsup{C}{7}{}\ldots\ldots\ldots\ldots\ldots\ldots..........
+x}\mp@subsup{x}{2}{{n-2}\mp@subsup{C}{1}{}+\mp@subsup{}{}{n-2}\mp@subsup{C}{3}{}+\mp@subsup{}{}{n-2}\mp@subsup{C}{5}{}+\mp@subsup{}{}{n-2}\mp@subsup{C}{7}{}\ldots\ldots\ldots\ldots\ldots\ldots\ldots..........}+\mp@subsup{x}{3}{}{\mp@subsup{n}{}{n-3}\mp@subsup{C}{1}{}
```



```
xn-1{1, C1 C } + x m (x is GCD of all numbers )
```

If this relation is correct,then

$$
\text { Numerator/Denominator }=1
$$

Substituting values, we get
$2^{q} / 2^{u}=1$
$2(q-u)=1$
$\mathrm{q}-\mathrm{u}=0$
So if $\mathrm{q}-\mathrm{u}=0$ is proved, the above relation is true for n numbers
Let us check this
Substituting values of q and u
We get

since we know the relation

```
\("\left({ }^{n} C_{0}+{ }^{n} C_{2}+{ }^{n} C_{4}+{ }^{n} C_{6} \ldots \ldots\right)=\left({ }^{n} C_{1}+{ }^{n} C_{3}+{ }^{n} C_{5}+{ }^{n} C_{7} \ldots \ldots \ldots\right) "\)
\(\left({ }^{n} C_{0}+{ }^{n} C_{2}+{ }^{n} C_{4}+{ }^{n} C_{6} \ldots \ldots ..\right)-\left({ }^{n} C_{1}+{ }^{n} C_{3}+{ }^{n} C_{5}+{ }^{n} C_{7} \ldots\right.\)
.) \(=0\)
```

using above relation
$\left[x_{1}\left\{{ }^{n-1} C_{0}+{ }^{n-1} C_{2}{ }^{+n-1} C_{4}+{ }^{n-1} C_{6} \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\right\}-\left\{{ }^{n-1} C_{1}+\right.\right.$ $\left.{ }^{n-1} C_{3}+{ }^{n-1} C_{5}+{ }^{n-1} C_{7} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\right\}+\left[x_{2}\left\{{ }^{n-2} C_{0}+{ }^{n-2} C_{2}+\right.\right.$
$\left.\left.{ }^{n-2} C_{4}+{ }^{n-2} C_{6} \ldots \ldots ..\right\}-\left\{{ }^{n-2} C_{1}+{ }^{n-2} C_{3}+{ }^{n-2} C_{5}+{ }^{n-2} C_{7} \ldots \ldots \ldots ..\right\}\right]$
$\ldots \ldots \ldots \ldots \ldots+x_{n}-x_{n}+x_{n-1}-x_{n-1}$
i.e.,
$\left(x_{1} \times 0\right)+\left(x_{2} \times 0\right) \ldots \ldots \ldots \ldots \ldots \ldots+0=0$
So $q-u=0$,
Similarly for all other primes(3,5,7...etc) and their powers it holds true.
Similarly for all numbers because every number is product of primes and their powers.
$a_{1} \times a_{2} \times a_{3} \ldots \ldots . . a_{n-1} \times a_{n} \times$ The product of LCMs of all sets containing odd no. of elements(except 1)
$1=$
The product of LCMs of all sets containing even no. of Elements $\times \mathrm{GCD}$ (all numbers)
i.e.,
$a_{1} \times a_{2} \times a_{3} \ldots \ldots . . . a_{n-1} \times a_{n}=$
The product of LCMs of all sets containing even no. of Elements \times GCD(of all numbers.)

The product of LCMs of all sets containing odd no. of elements (except 1)

Hence Relation 2 is proved

Example

Let us take one example with Five numbers $(n=5)$ i.e, $a_{1}=24, a_{2}=36, a_{3}=45, a_{4}=85, a_{5}=135$

Product of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}=446148000$

Two nos.taken	GCD	LCM
24,36	12	72
24,45	3	360
24,85	1	2040
24,135	3	1080
36,45	9	180
36,85	1	3060
36,135	9	540
45,85	5	765
45,135	45	135

85,135	5	2295
Product(Two)	$\mathbf{9 8 4 1 5 0 0}$	$4.02582 \mathrm{E}+27$

Three Nos.	GCD	LCM
$24,36,45$	3	360
$24,36,85$	1	6120
$24,36,135$	3	1080
$24,45,85$	1	6120
$24,45,135$	3	1080
$24,85,135$	1	18360
$36,45,85$	1	3060
$36,45,135$	9	540
$36,85,135$	1	9180
$45,85,135$	5	2295
Product(Three)	$\mathbf{1 2 1 5}$	$\mathbf{1 . 0 0 5 2 3 E}+34$

Four Nos.	GCD	LCM
$24,36,45,85$	1	6120
$24,36,45,135$	3	1080
$24,36,85,135$	1	18360
$24,45,85,135$	1	18360
$36,45,85,135$	1	9180
Product(Four)	$\mathbf{3}$	$\mathbf{2 . 0 4 5 3 3 E}+\mathbf{1 9}$

Five Nos.	GCD	LCM
$24,36,45,85,135$	1	18360
Product(Five)	$\mathbf{1}$	$\mathbf{1 8 3 6 0}$

Relation $1=(9841500 * 3 * 18360) /(1215 * 1)=446148000$
Relation $2=(4.02582 \mathrm{E}+27$ * $2.04533 \mathrm{E}+19$ * 1) / 1.00523E +34 * $18360)=446148000$

Conclusion

Both relations are tested for different values from $n=4$ to 10 in MS-Excel sheet and found to be correct.

Acknowledgements

The author wishes to thank Mr. H.Srinivas Reddy,M.Sc,B.Ed (Varadhi Institute of Mathematics \& Science, Karimnagar,A.P.) for his guidance and support. The author also wishes to thank Rev.Fr.Casmir D'Souza, Head Master of St.Claire High School, Ramagundam, Dist:Karimnagar, A.P.(India) and Dr. S.R.Santhanam (AMTI, Chennai, India) for their co-operation and encouragement.

